diff -urN -X dontdiff linux-2.4.19-pre7/include/linux/if_bridge.h linux-2.4.19-pre7-crypt/include/linux/if_bridge.h --- linux-2.4.19-pre7/include/linux/if_bridge.h Thu Nov 22 11:47:12 2001 +++ linux-2.4.19-pre7-crypt/include/linux/if_bridge.h Thu Apr 18 13:39:15 2002 @@ -3,8 +3,10 @@ * * Authors: * Lennert Buytenhek + * Christian Welzel + * Arne Fitzenreiter * - * $Id: if_bridge.h,v 1.1 2000/02/18 16:47:01 davem Exp $ + * $Id: if_bridge.h,v 1.1a 2001/04/22 14:16:01 davem Exp $ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License @@ -39,12 +41,30 @@ #define BRCTL_SET_PATH_COST 17 #define BRCTL_GET_FDB_ENTRIES 18 +#define BRCTL_SET_MAC_DISABLED 19 +#define BRCTL_SET_MAC_ENABLED 20 +#define BRCTL_GET_DISABLED_MACS 21 + +#define BRCTL_ADD_FILT_PROTOCOL 22 +#define BRCTL_DEL_FILT_PROTOCOL 23 +#define BRCTL_GET_FILT_PROTOCOLS 24 +#define BRCTL_SET_PROTOCOL_FILTER_MODE 25 +#define BRCTL_GET_PROTOCOL_FILTER_MODE 26 + +#define BRCTL_SET_MAC_CRYPT 27 +#define BRCTL_SET_MAC_CLEAR 28 +#define BRCTL_GET_CRYPT_MACS 29 + #define BR_STATE_DISABLED 0 #define BR_STATE_LISTENING 1 #define BR_STATE_LEARNING 2 #define BR_STATE_FORWARDING 3 #define BR_STATE_BLOCKING 4 +#define BR_CRYPT_KEYLEN 16 +#define BR_ENCRYPT_FLAG 1 +#define BR_DECRYPT_FLAG 2 + struct __bridge_info { __u64 designated_root; @@ -92,6 +112,23 @@ __u8 is_local; __u32 ageing_timer_value; __u32 unused; +}; + +struct __ftdb_entry +{ + __u8 mac_addr[6]; +}; + +struct __ftpdb_entry +{ + __u16 filt_protocol; +}; + +struct __crypthash_entry +{ + __u8 mac_addr[6]; + __u8 flags; + unsigned char key[BR_CRYPT_KEYLEN]; }; #ifdef __KERNEL__ diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/Makefile linux-2.4.19-pre7-crypt/net/bridge/Makefile --- linux-2.4.19-pre7/net/bridge/Makefile Fri Dec 29 14:07:24 2000 +++ linux-2.4.19-pre7-crypt/net/bridge/Makefile Thu Apr 18 13:39:15 2002 @@ -10,7 +10,8 @@ O_TARGET := bridge.o obj-y := br.o br_device.o br_fdb.o br_forward.o br_if.o br_input.o \ br_ioctl.o br_notify.o br_stp.o br_stp_bpdu.o \ - br_stp_if.o br_stp_timer.o + br_stp_if.o br_stp_timer.o \ + br_chash.o br_aes_glue.o aestab.o aescrypt.o aeskey.o obj-m := $(O_TARGET) include $(TOPDIR)/Rules.make diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/aes.h linux-2.4.19-pre7-crypt/net/bridge/aes.h --- linux-2.4.19-pre7/net/bridge/aes.h Wed Dec 31 16:00:00 1969 +++ linux-2.4.19-pre7-crypt/net/bridge/aes.h Thu Apr 18 13:39:15 2002 @@ -0,0 +1,94 @@ +/* + ------------------------------------------------------------------------- + Copyright (c) 2001, Dr Brian Gladman , Worcester, UK. + All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explcit or implied warranties + in respect of any properties, including, but not limited to, correctness + and fitness for purpose. + ------------------------------------------------------------------------- + Issue Date: 21/01/2002 + + This file contains the definitions required to use AES (Rijndael) in C. +*/ + +#ifndef _AES_H +#define _AES_H + +/* + * Modification by Torrey for encrypting bridge: we don't need this + * header since all the fixed length types are already defined in the + * kernel compile. + * + * #include "uitypes.h" + * + * remap them here: + */ +#include +#define uint32_t u_int32_t + +/* BLOCK_SIZE is in BYTES: 16, 24, 32 or undefined for aes.c and 16, 20, + 24, 28, 32 or undefined for aespp.c. When left undefined a slower + version that provides variable block length is compiled. +*/ + +#define BLOCK_SIZE 16 + +/* key schedule length (in 32-bit words) */ + +#if !defined(BLOCK_SIZE) +#define KS_LENGTH 128 +#else +#define KS_LENGTH 4 * BLOCK_SIZE +#endif + +#if defined(__cplusplus) +extern "C" +{ +#endif + +typedef uint16_t aes_fret; /* type for function return value */ +#define aes_bad 0 /* bad function return value */ +#define aes_good 1 /* good function return value */ +#ifndef AES_DLL /* implement normal or DLL functions */ +#define aes_rval aes_fret +#else +#define aes_rval aes_fret __declspec(dllexport) _stdcall +#endif + +typedef struct /* the AES context for encryption */ +{ uint32_t k_sch[KS_LENGTH]; /* the encryption key schedule */ + uint32_t n_rnd; /* the number of cipher rounds */ + uint32_t n_blk; /* the number of bytes in the state */ +} aes_ctx; + +aes_rval aes_blk_len(unsigned int blen, aes_ctx cx[1]); + +aes_rval aes_enc_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]); +aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1]); + +aes_rval aes_dec_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]); +aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1]); + +#if defined(__cplusplus) +} +#endif + +#endif diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/aescrypt.c linux-2.4.19-pre7-crypt/net/bridge/aescrypt.c --- linux-2.4.19-pre7/net/bridge/aescrypt.c Wed Dec 31 16:00:00 1969 +++ linux-2.4.19-pre7-crypt/net/bridge/aescrypt.c Thu Apr 18 13:39:15 2002 @@ -0,0 +1,421 @@ +/* + ------------------------------------------------------------------------- + Copyright (c) 2001, Dr Brian Gladman , Worcester, UK. + All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explcit or implied warranties + in respect of any properties, including, but not limited to, correctness + and fitness for purpose. + ------------------------------------------------------------------------- + Issue Date: 21/01/2002 + + This file contains the code for implementing encryption and decryption + for AES (Rijndael) for block and key sizes of 16, 24 and 32 bytes. It + can optionally be replaced by code written in assembler using NASM. +*/ + +#include "aesopt.h" + +#if defined(BLOCK_SIZE) && (BLOCK_SIZE & 7) +#error An illegal block size has been specified. +#endif + +#define unused 77 /* Sunset Strip */ + +#define si(y,x,k,c) s(y,c) = word_in(x + 4 * c) ^ k[c] +#define so(y,x,c) word_out(y + 4 * c, s(x,c)) + +#if BLOCK_SIZE == 16 + +#if defined(ARRAYS) +#define locals(y,x) x[4],y[4] +#else +#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3 + /* + the following defines prevent the compiler requiring the declaration + of generated but unused variables in the fwd_var and inv_var macros + */ +#define b04 unused +#define b05 unused +#define b06 unused +#define b07 unused +#define b14 unused +#define b15 unused +#define b16 unused +#define b17 unused +#endif +#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \ + s(y,2) = s(x,2); s(y,3) = s(x,3); +#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3) +#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3) +#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3) + +#elif BLOCK_SIZE == 24 + +#if defined(ARRAYS) +#define locals(y,x) x[6],y[6] +#else +#define locals(y,x) x##0,x##1,x##2,x##3,x##4,x##5, \ + y##0,y##1,y##2,y##3,y##4,y##5 +#define b06 unused +#define b07 unused +#define b16 unused +#define b17 unused +#endif +#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \ + s(y,2) = s(x,2); s(y,3) = s(x,3); \ + s(y,4) = s(x,4); s(y,5) = s(x,5); +#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); \ + si(y,x,k,3); si(y,x,k,4); si(y,x,k,5) +#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); \ + so(y,x,3); so(y,x,4); so(y,x,5) +#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); \ + rm(y,x,k,3); rm(y,x,k,4); rm(y,x,k,5) +#else + +#if defined(ARRAYS) +#define locals(y,x) x[8],y[8] +#else +#define locals(y,x) x##0,x##1,x##2,x##3,x##4,x##5,x##6,x##7, \ + y##0,y##1,y##2,y##3,y##4,y##5,y##6,y##7 +#endif +#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \ + s(y,2) = s(x,2); s(y,3) = s(x,3); \ + s(y,4) = s(x,4); s(y,5) = s(x,5); \ + s(y,6) = s(x,6); s(y,7) = s(x,7); + +#if BLOCK_SIZE == 32 + +#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3); \ + si(y,x,k,4); si(y,x,k,5); si(y,x,k,6); si(y,x,k,7) +#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3); \ + so(y,x,4); so(y,x,5); so(y,x,6); so(y,x,7) +#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3); \ + rm(y,x,k,4); rm(y,x,k,5); rm(y,x,k,6); rm(y,x,k,7) +#else + +#define state_in(y,x,k) \ +switch(nc) \ +{ case 8: si(y,x,k,7); si(y,x,k,6); \ + case 6: si(y,x,k,5); si(y,x,k,4); \ + case 4: si(y,x,k,3); si(y,x,k,2); \ + si(y,x,k,1); si(y,x,k,0); \ +} + +#define state_out(y,x) \ +switch(nc) \ +{ case 8: so(y,x,7); so(y,x,6); \ + case 6: so(y,x,5); so(y,x,4); \ + case 4: so(y,x,3); so(y,x,2); \ + so(y,x,1); so(y,x,0); \ +} + +#if defined(FAST_VARIABLE) + +#define round(rm,y,x,k) \ +switch(nc) \ +{ case 8: rm(y,x,k,7); rm(y,x,k,6); \ + rm(y,x,k,5); rm(y,x,k,4); \ + rm(y,x,k,3); rm(y,x,k,2); \ + rm(y,x,k,1); rm(y,x,k,0); \ + break; \ + case 6: rm(y,x,k,5); rm(y,x,k,4); \ + rm(y,x,k,3); rm(y,x,k,2); \ + rm(y,x,k,1); rm(y,x,k,0); \ + break; \ + case 4: rm(y,x,k,3); rm(y,x,k,2); \ + rm(y,x,k,1); rm(y,x,k,0); \ + break; \ +} +#else + +#define round(rm,y,x,k) \ +switch(nc) \ +{ case 8: rm(y,x,k,7); rm(y,x,k,6); \ + case 6: rm(y,x,k,5); rm(y,x,k,4); \ + case 4: rm(y,x,k,3); rm(y,x,k,2); \ + rm(y,x,k,1); rm(y,x,k,0); \ +} + +#endif + +#endif +#endif + +#if defined(ENCRYPTION) + +/* I am grateful to Frank Yellin for the following construction + (and that for decryption) which, given the column (c) of the + output state variable, gives the input state variables which + are needed in its computation for each row (r) of the state. + + For the fixed block size options, compilers should be able to + reduce this complex expression (and the equivalent one for + decryption) to a static variable reference at compile time. + But for variable block size code, there will be some limbs on + which conditional clauses will be returned. +*/ + +/* y = output word, x = input word, r = row, c = column for r = 0, + 1, 2 and 3 = column accessed for row r. +*/ + +#define fwd_var(x,r,c) \ + ( r==0 ? \ + ( c==0 ? s(x,0) \ + : c==1 ? s(x,1) \ + : c==2 ? s(x,2) \ + : c==3 ? s(x,3) \ + : c==4 ? s(x,4) \ + : c==5 ? s(x,5) \ + : c==6 ? s(x,6) \ + : s(x,7)) \ + : r==1 ? \ + ( c==0 ? s(x,1) \ + : c==1 ? s(x,2) \ + : c==2 ? s(x,3) \ + : c==3 ? nc==4 ? s(x,0) : s(x,4) \ + : c==4 ? s(x,5) \ + : c==5 ? nc==8 ? s(x,6) : s(x,0) \ + : c==6 ? s(x,7) \ + : s(x,0)) \ + : r==2 ? \ + ( c==0 ? nc==8 ? s(x,3) : s(x,2) \ + : c==1 ? nc==8 ? s(x,4) : s(x,3) \ + : c==2 ? nc==4 ? s(x,0) : nc==8 ? s(x,5) : s(x,4) \ + : c==3 ? nc==4 ? s(x,1) : nc==8 ? s(x,6) : s(x,5) \ + : c==4 ? nc==8 ? s(x,7) : s(x,0) \ + : c==5 ? nc==8 ? s(x,0) : s(x,1) \ + : c==6 ? s(x,1) \ + : s(x,2)) \ + : \ + ( c==0 ? nc==8 ? s(x,4) : s(x,3) \ + : c==1 ? nc==4 ? s(x,0) : nc==8 ? s(x,5) : s(x,4) \ + : c==2 ? nc==4 ? s(x,1) : nc==8 ? s(x,6) : s(x,5) \ + : c==3 ? nc==4 ? s(x,2) : nc==8 ? s(x,7) : s(x,0) \ + : c==4 ? nc==8 ? s(x,0) : s(x,1) \ + : c==5 ? nc==8 ? s(x,1) : s(x,2) \ + : c==6 ? s(x,2) \ + : s(x,3))) + +#if defined(FT4_SET) +#undef dec_fmvars +#define dec_fmvars +#define fwd_rnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,ft_tab,fwd_var,rf1,c) +#elif defined(FT1_SET) +#undef dec_fmvars +#define dec_fmvars +#define fwd_rnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,upr,ft_tab,fwd_var,rf1,c) +#else +#define fwd_rnd(y,x,k,c) s(y,c) = fwd_mcol(no_table(x,s_box,fwd_var,rf1,c)) ^ (k)[c] +#endif + +#if defined(FL4_SET) +#define fwd_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,fl_tab,fwd_var,rf1,c) +#elif defined(FL1_SET) +#define fwd_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,ups,fl_tab,fwd_var,rf1,c) +#else +#define fwd_lrnd(y,x,k,c) s(y,c) = no_table(x,s_box,fwd_var,rf1,c) ^ (k)[c] +#endif + +aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1]) +{ uint32_t locals(b0, b1); + const uint32_t *kp = cx->k_sch; + dec_fmvars /* declare variables for fwd_mcol() if needed */ + + if(!(cx->n_blk & 1)) return aes_bad; + + state_in(b0, in_blk, kp); + +#if (ENC_UNROLL == FULL) + + kp += (cx->n_rnd - 9) * nc; + + switch(cx->n_rnd) + { + case 14: round(fwd_rnd, b1, b0, kp - 4 * nc); + round(fwd_rnd, b0, b1, kp - 3 * nc); + case 12: round(fwd_rnd, b1, b0, kp - 2 * nc); + round(fwd_rnd, b0, b1, kp - nc); + case 10: round(fwd_rnd, b1, b0, kp ); + round(fwd_rnd, b0, b1, kp + nc); + round(fwd_rnd, b1, b0, kp + 2 * nc); + round(fwd_rnd, b0, b1, kp + 3 * nc); + round(fwd_rnd, b1, b0, kp + 4 * nc); + round(fwd_rnd, b0, b1, kp + 5 * nc); + round(fwd_rnd, b1, b0, kp + 6 * nc); + round(fwd_rnd, b0, b1, kp + 7 * nc); + round(fwd_rnd, b1, b0, kp + 8 * nc); + round(fwd_lrnd, b0, b1, kp + 9 * nc); + } +#else + +#if (ENC_UNROLL == PARTIAL) + { uint32_t rnd; + for(rnd = 0; rnd < (cx->n_rnd >> 1) - 1; ++rnd) + { + kp += nc; + round(fwd_rnd, b1, b0, kp); + kp += nc; + round(fwd_rnd, b0, b1, kp); + } + kp += nc; + round(fwd_rnd, b1, b0, kp); +#else + { uint32_t rnd, *p0 = b0, *p1 = b1, *pt; + for(rnd = 0; rnd < cx->n_rnd - 1; ++rnd) + { + kp += nc; + round(fwd_rnd, p1, p0, kp); + pt = p0, p0 = p1, p1 = pt; + } +#endif + kp += nc; + round(fwd_lrnd, b0, b1, kp); + } +#endif + + state_out(out_blk, b0); + return aes_good; +} + +#endif + +#if defined(DECRYPTION) + +#define inv_var(x,r,c) \ + ( r==0 ? \ + ( c==0 ? s(x,0) \ + : c==1 ? s(x,1) \ + : c==2 ? s(x,2) \ + : c==3 ? s(x,3) \ + : c==4 ? s(x,4) \ + : c==5 ? s(x,5) \ + : c==6 ? s(x,6) \ + : s(x,7)) \ + : r==1 ? \ + ( c==0 ? nc==4 ? s(x,3) : nc==8 ? s(x,7) : s(x,5) \ + : c==1 ? s(x,0) \ + : c==2 ? s(x,1) \ + : c==3 ? s(x,2) \ + : c==4 ? s(x,3) \ + : c==5 ? s(x,4) \ + : c==6 ? s(x,5) \ + : s(x,6)) \ + : r==2 ? \ + ( c==0 ? nc==4 ? s(x,2) : nc==8 ? s(x,5) : s(x,4) \ + : c==1 ? nc==4 ? s(x,3) : nc==8 ? s(x,6) : s(x,5) \ + : c==2 ? nc==8 ? s(x,7) : s(x,0) \ + : c==3 ? nc==8 ? s(x,0) : s(x,1) \ + : c==4 ? nc==8 ? s(x,1) : s(x,2) \ + : c==5 ? nc==8 ? s(x,2) : s(x,3) \ + : c==6 ? s(x,3) \ + : s(x,4)) \ + : \ + ( c==0 ? nc==4 ? s(x,1) : nc==8 ? s(x,4) : s(x,3) \ + : c==1 ? nc==4 ? s(x,2) : nc==8 ? s(x,5) : s(x,4) \ + : c==2 ? nc==4 ? s(x,3) : nc==8 ? s(x,6) : s(x,5) \ + : c==3 ? nc==8 ? s(x,7) : s(x,0) \ + : c==4 ? nc==8 ? s(x,0) : s(x,1) \ + : c==5 ? nc==8 ? s(x,1) : s(x,2) \ + : c==6 ? s(x,2) \ + : s(x,3))) + +#if defined(IT4_SET) +#undef dec_imvars +#define dec_imvars +#define inv_rnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,it_tab,inv_var,rf1,c) +#elif defined(IT1_SET) +#undef dec_imvars +#define dec_imvars +#define inv_rnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,upr,it_tab,inv_var,rf1,c) +#else +#define inv_rnd(y,x,k,c) s(y,c) = inv_mcol(no_table(x,inv_s_box,inv_var,rf1,c) ^ (k)[c]) +#endif + +#if defined(IL4_SET) +#define inv_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,il_tab,inv_var,rf1,c) +#elif defined(IL1_SET) +#define inv_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,ups,il_tab,inv_var,rf1,c) +#else +#define inv_lrnd(y,x,k,c) s(y,c) = no_table(x,inv_s_box,inv_var,rf1,c) ^ (k)[c] +#endif + +aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1]) +{ uint32_t locals(b0, b1); + const uint32_t *kp = cx->k_sch + nc * cx->n_rnd; + dec_imvars /* declare variables for inv_mcol() if needed */ + + if(!(cx->n_blk & 2)) return aes_bad; + + state_in(b0, in_blk, kp); + +#if (DEC_UNROLL == FULL) + + kp = cx->k_sch + 9 * nc; + switch(cx->n_rnd) + { + case 14: round(inv_rnd, b1, b0, kp + 4 * nc); + round(inv_rnd, b0, b1, kp + 3 * nc); + case 12: round(inv_rnd, b1, b0, kp + 2 * nc); + round(inv_rnd, b0, b1, kp + nc ); + case 10: round(inv_rnd, b1, b0, kp ); + round(inv_rnd, b0, b1, kp - nc); + round(inv_rnd, b1, b0, kp - 2 * nc); + round(inv_rnd, b0, b1, kp - 3 * nc); + round(inv_rnd, b1, b0, kp - 4 * nc); + round(inv_rnd, b0, b1, kp - 5 * nc); + round(inv_rnd, b1, b0, kp - 6 * nc); + round(inv_rnd, b0, b1, kp - 7 * nc); + round(inv_rnd, b1, b0, kp - 8 * nc); + round(inv_lrnd, b0, b1, kp - 9 * nc); + } +#else + +#if (DEC_UNROLL == PARTIAL) + { uint32_t rnd; + for(rnd = 0; rnd < (cx->n_rnd >> 1) - 1; ++rnd) + { + kp -= nc; + round(inv_rnd, b1, b0, kp); + kp -= nc; + round(inv_rnd, b0, b1, kp); + } + kp -= nc; + round(inv_rnd, b1, b0, kp); +#else + { uint32_t rnd, *p0 = b0, *p1 = b1, *pt; + for(rnd = 0; rnd < cx->n_rnd - 1; ++rnd) + { + kp -= nc; + round(inv_rnd, p1, p0, kp); + pt = p0, p0 = p1, p1 = pt; + } +#endif + kp -= nc; + round(inv_lrnd, b0, b1, kp); + } +#endif + + state_out(out_blk, b0); + return aes_good; +} + +#endif diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/aeskey.c linux-2.4.19-pre7-crypt/net/bridge/aeskey.c --- linux-2.4.19-pre7/net/bridge/aeskey.c Wed Dec 31 16:00:00 1969 +++ linux-2.4.19-pre7-crypt/net/bridge/aeskey.c Thu Apr 18 13:39:15 2002 @@ -0,0 +1,363 @@ +/* + ------------------------------------------------------------------------- + Copyright (c) 2001, Dr Brian Gladman , Worcester, UK. + All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explcit or implied warranties + in respect of any properties, including, but not limited to, correctness + and fitness for purpose. + ------------------------------------------------------------------------- + Issue Date: 21/01/2002 + + This file contains the code for implementing the key schedule for AES + (Rijndael) for block and key sizes of 16, 24, and 32 bytes. +*/ + +#include "aesopt.h" + +#if defined(BLOCK_SIZE) && (BLOCK_SIZE & 7) +#error An illegal block size has been specified. +#endif + +/* Subroutine to set the block size (if variable) in bytes, legal + values being 16, 24 and 32. +*/ + +#if !defined(BLOCK_SIZE) && defined(SET_BLOCK_LENGTH) + +aes_rval aes_blk_len(unsigned int blen, aes_ctx cx[1]) +{ +#if !defined(FIXED_TABLES) + if(!tab_init) gen_tabs(); +#endif + + if((blen & 7) || blen < 16 || blen > 32) + { + cx->n_blk = 0; return aes_bad; + } + + cx->n_blk = blen; + return aes_good; +} + +#endif + +/* Initialise the key schedule from the user supplied key. The key + length is now specified in bytes - 16, 24 or 32 as appropriate. + This corresponds to bit lengths of 128, 192 and 256 bits, and + to Nk values of 4, 6 and 8 respectively. + + The following macros implement a single cycle in the key + schedule generation process. The number of cycles needed + for each cx->n_col and nk value is: + + nk = 4 5 6 7 8 + ------------------------------ + cx->n_col = 4 10 9 8 7 7 + cx->n_col = 5 14 11 10 9 9 + cx->n_col = 6 19 15 12 11 11 + cx->n_col = 7 21 19 16 13 14 + cx->n_col = 8 29 23 19 17 14 +*/ + +#if defined(ENCRYPTION_KEY_SCHEDULE) + +#define ke4(k,i) \ +{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ + k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ +} +#define kel4(k,i) \ +{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ + k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ +} + +#define ke6(k,i) \ +{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ + k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ + k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \ +} +#define kel6(k,i) \ +{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ + k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ +} + +#define ke8(k,i) \ +{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ + k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ + k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \ + k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \ +} +#define kel8(k,i) \ +{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ + k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ +} + +aes_rval aes_enc_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]) +{ uint32_t ss[8]; + +#if !defined(FIXED_TABLES) + if(!tab_init) gen_tabs(); +#endif + +#if !defined(BLOCK_SIZE) + if(!cx->n_blk) cx->n_blk = 16; +#else + cx->n_blk = BLOCK_SIZE; +#endif + + cx->n_blk = (cx->n_blk & ~3) | 1; + + cx->k_sch[0] = ss[0] = word_in(in_key ); + cx->k_sch[1] = ss[1] = word_in(in_key + 4); + cx->k_sch[2] = ss[2] = word_in(in_key + 8); + cx->k_sch[3] = ss[3] = word_in(in_key + 12); + +#if (BLOCK_SIZE == 16) && (ENC_UNROLL != NONE) + + switch(klen) + { + case 16: ke4(cx->k_sch, 0); ke4(cx->k_sch, 1); + ke4(cx->k_sch, 2); ke4(cx->k_sch, 3); + ke4(cx->k_sch, 4); ke4(cx->k_sch, 5); + ke4(cx->k_sch, 6); ke4(cx->k_sch, 7); + ke4(cx->k_sch, 8); kel4(cx->k_sch, 9); + cx->n_rnd = 10; break; + case 24: cx->k_sch[4] = ss[4] = word_in(in_key + 16); + cx->k_sch[5] = ss[5] = word_in(in_key + 20); + ke6(cx->k_sch, 0); ke6(cx->k_sch, 1); + ke6(cx->k_sch, 2); ke6(cx->k_sch, 3); + ke6(cx->k_sch, 4); ke6(cx->k_sch, 5); + ke6(cx->k_sch, 6); kel6(cx->k_sch, 7); + cx->n_rnd = 12; break; + case 32: cx->k_sch[4] = ss[4] = word_in(in_key + 16); + cx->k_sch[5] = ss[5] = word_in(in_key + 20); + cx->k_sch[6] = ss[6] = word_in(in_key + 24); + cx->k_sch[7] = ss[7] = word_in(in_key + 28); + ke8(cx->k_sch, 0); ke8(cx->k_sch, 1); + ke8(cx->k_sch, 2); ke8(cx->k_sch, 3); + ke8(cx->k_sch, 4); ke8(cx->k_sch, 5); + kel8(cx->k_sch, 6); + cx->n_rnd = 14; break; + default: cx->n_rnd = 0; return aes_bad; + } +#else + { uint32_t i, l; + cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6; + l = (nc * cx->n_rnd + nc - 1) / (klen >> 2); + + switch(klen) + { + case 16: for(i = 0; i < l; ++i) + ke4(cx->k_sch, i); + break; + case 24: cx->k_sch[4] = ss[4] = word_in(in_key + 16); + cx->k_sch[5] = ss[5] = word_in(in_key + 20); + for(i = 0; i < l; ++i) + ke6(cx->k_sch, i); + break; + case 32: cx->k_sch[4] = ss[4] = word_in(in_key + 16); + cx->k_sch[5] = ss[5] = word_in(in_key + 20); + cx->k_sch[6] = ss[6] = word_in(in_key + 24); + cx->k_sch[7] = ss[7] = word_in(in_key + 28); + for(i = 0; i < l; ++i) + ke8(cx->k_sch, i); + break; + default: cx->n_rnd = 0; return aes_bad; + } + } +#endif + + return aes_good; +} + +#endif + +#if defined(DECRYPTION_KEY_SCHEDULE) + +#if (DEC_ROUND != NO_TABLES) +#define d_vars dec_imvars +#define ff(x) inv_mcol(x) +#else +#define ff(x) (x) +#define d_vars +#endif + +#if 1 +#define kdf4(k,i) \ +{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \ + ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; \ + ss[4] ^= k[4*(i)]; k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \ + ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \ +} +#define kd4(k,i) \ +{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ + k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ + k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ +} +#define kdl4(k,i) \ +{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; \ + k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \ + k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \ +} +#else +#define kdf4(k,i) \ +{ ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \ + ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \ +} +#define kd4(k,i) \ +{ ss[4] = ls_box(ss[3],3) ^ rcon_tab[i]; \ + ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \ + ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \ + ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \ + ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \ +} +#define kdl4(k,i) \ +{ ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \ + ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \ +} +#endif + +#define kdf6(k,i) \ +{ ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \ + ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \ + ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \ +} +#define kd6(k,i) \ +{ ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \ + ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ + ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ + ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ + ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ + ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ + ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ +} +#define kdl6(k,i) \ +{ ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \ + ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \ +} + +#define kdf8(k,i) \ +{ ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \ + ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \ + ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \ + ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \ +} +#define kd8(k,i) \ +{ uint32_t g = ls_box(ss[7],3) ^ rcon_tab[i]; \ + ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \ + ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \ + ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \ + ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \ + g = ls_box(ss[3],0); \ + ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \ + ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \ + ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \ + ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \ +} +#define kdl8(k,i) \ +{ ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \ + ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \ +} + +aes_rval aes_dec_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]) +{ uint32_t ss[8]; + d_vars + +#if !defined(FIXED_TABLES) + if(!tab_init) gen_tabs(); +#endif + +#if !defined(BLOCK_SIZE) + if(!cx->n_blk) cx->n_blk = 16; +#else + cx->n_blk = BLOCK_SIZE; +#endif + + cx->n_blk = (cx->n_blk & ~3) | 2; + + cx->k_sch[0] = ss[0] = word_in(in_key ); + cx->k_sch[1] = ss[1] = word_in(in_key + 4); + cx->k_sch[2] = ss[2] = word_in(in_key + 8); + cx->k_sch[3] = ss[3] = word_in(in_key + 12); + +#if (BLOCK_SIZE == 16) && (DEC_UNROLL != NONE) + + switch(klen) + { + case 16: kdf4(cx->k_sch, 0); kd4(cx->k_sch, 1); + kd4(cx->k_sch, 2); kd4(cx->k_sch, 3); + kd4(cx->k_sch, 4); kd4(cx->k_sch, 5); + kd4(cx->k_sch, 6); kd4(cx->k_sch, 7); + kd4(cx->k_sch, 8); kdl4(cx->k_sch, 9); + cx->n_rnd = 10; break; + case 24: cx->k_sch[4] = ff(ss[4] = word_in(in_key + 16)); + cx->k_sch[5] = ff(ss[5] = word_in(in_key + 20)); + kdf6(cx->k_sch, 0); kd6(cx->k_sch, 1); + kd6(cx->k_sch, 2); kd6(cx->k_sch, 3); + kd6(cx->k_sch, 4); kd6(cx->k_sch, 5); + kd6(cx->k_sch, 6); kdl6(cx->k_sch, 7); + cx->n_rnd = 12; break; + case 32: cx->k_sch[4] = ff(ss[4] = word_in(in_key + 16)); + cx->k_sch[5] = ff(ss[5] = word_in(in_key + 20)); + cx->k_sch[6] = ff(ss[6] = word_in(in_key + 24)); + cx->k_sch[7] = ff(ss[7] = word_in(in_key + 28)); + kdf8(cx->k_sch, 0); kd8(cx->k_sch, 1); + kd8(cx->k_sch, 2); kd8(cx->k_sch, 3); + kd8(cx->k_sch, 4); kd8(cx->k_sch, 5); + kdl8(cx->k_sch, 6); + cx->n_rnd = 14; break; + default: cx->n_rnd = 0; return aes_bad; + } +#else + { uint32_t i, l; + cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6; + l = (nc * cx->n_rnd + nc - 1) / (klen >> 2); + + switch(klen) + { + case 16: + for(i = 0; i < l; ++i) + ke4(cx->k_sch, i); + break; + case 24: cx->k_sch[4] = ss[4] = word_in(in_key + 16); + cx->k_sch[5] = ss[5] = word_in(in_key + 20); + for(i = 0; i < l; ++i) + ke6(cx->k_sch, i); + break; + case 32: cx->k_sch[4] = ss[4] = word_in(in_key + 16); + cx->k_sch[5] = ss[5] = word_in(in_key + 20); + cx->k_sch[6] = ss[6] = word_in(in_key + 24); + cx->k_sch[7] = ss[7] = word_in(in_key + 28); + for(i = 0; i < l; ++i) + ke8(cx->k_sch, i); + break; + default: cx->n_rnd = 0; return aes_bad; + } +#if (DEC_ROUND != NO_TABLES) + for(i = nc; i < nc * cx->n_rnd; ++i) + cx->k_sch[i] = inv_mcol(cx->k_sch[i]); +#endif + } +#endif + + return aes_good; +} + +#endif diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/aesopt.h linux-2.4.19-pre7-crypt/net/bridge/aesopt.h --- linux-2.4.19-pre7/net/bridge/aesopt.h Wed Dec 31 16:00:00 1969 +++ linux-2.4.19-pre7-crypt/net/bridge/aesopt.h Thu Apr 18 13:39:15 2002 @@ -0,0 +1,852 @@ +/* + ------------------------------------------------------------------------- + Copyright (c) 2001, Dr Brian Gladman , Worcester, UK. + All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explcit or implied warranties + in respect of any properties, including, but not limited to, correctness + and fitness for purpose. + ------------------------------------------------------------------------- + Issue Date: 07/02/2002 + + This file contains the compilation options for AES (Rijndael) and code + that is common across encryption, key scheduling and table generation. + + + OPERATION + + These source code files implement the AES algorithm Rijndael designed by + Joan Daemen and Vincent Rijmen. The version in aes.c is designed for + block and key sizes of 128, 192 and 256 bits (16, 24 and 32 bytes) while + that in aespp.c provides for block and keys sizes of 128, 160, 192, 224 + and 256 bits (16, 20, 24, 28 and 32 bytes). This file is a common header + file for these two implementations and for aesref.c, which is a reference + implementation. + + This version is designed for flexibility and speed using operations on + 32-bit words rather than operations on bytes. It provides aes_both fixed + and dynamic block and key lengths and can also run with either big or + little endian internal byte order (see aes.h). It inputs block and key + lengths in bytes with the legal values being 16, 24 and 32 for aes.c and + 16, 20, 24, 28 and 32 for aespp.c + + THE CIPHER INTERFACE + + uint8_t (an unsigned 8-bit type) + uint32_t (an unsigned 32-bit type) + aes_fret (a signed 16 bit type for function return values) + aes_good (value != 0, a good return) + aes_bad (value == 0, an error return) + struct aes_ctx (structure for the cipher encryption context) + struct aes_ctx (structure for the cipher decryption context) + aes_rval the function return type (aes_fret if not DLL) + + C subroutine calls: + + aes_rval aes_blk_len(unsigned int blen, aes_ctx cx[1]); + aes_rval aes_enc_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]); + aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1]); + + aes_rval aes_dec_len(unsigned int blen, aes_ctx cx[1]); + aes_rval aes_dec_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]); + aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1]); + + IMPORTANT NOTE: If you are using this C interface and your compiler does + not set the memory used for objects to zero before use, you will need to + ensure that cx.s_flg is set to zero before using these subroutine calls. + + C++ aes class subroutines: + + class AESclass for encryption + class AESclass for decryption + + aes_rval len(unsigned int blen = 16); + aes_rval key(const unsigned char in_key[], unsigned int klen); + aes_rval blk(const unsigned char in_blk[], unsigned char out_blk[]); + + aes_rval len(unsigned int blen = 16); + aes_rval key(const unsigned char in_key[], unsigned int klen); + aes_rval blk(const unsigned char in_blk[], unsigned char out_blk[]); + + The block length inputs to set_block and set_key are in numbers of + BYTES, not bits. The calls to subroutines must be made in the above + order but multiple calls can be made without repeating earlier calls + if their parameters have not changed. If the cipher block length is + variable but set_blk has not been called before cipher operations a + value of 16 is assumed (that is, the AES block size). In contrast to + earlier versions the block and key length parameters are now checked + for correctness and the encryption and decryption routines check to + ensure that an appropriate key has been set before they are called. + + COMPILATION + + The files used to provide AES (Rijndael) are + + a. aes.h for the definitions needed for use in C. + b. aescpp.h for the definitions needed for use in C++. + c. aesopt.h for setting compilation options (also includes common + code). + d. aescrypt.c for encryption and decrytpion, or + e. aescrypt.asm for encryption and decryption using assembler code. + f. aeskey.c for key scheduling. + g. aestab.c for table loading or generation. + h. uitypes.h for defining fixed length unsigned integers. + + The assembler code uses the NASM assembler. The above files provice + block and key lengths of 16, 24 and 32 bytes (128, 192 and 256 bits). + If aescrypp.c and aeskeypp.c are used instead of aescrypt.c and + aeskey.c respectively, the block and key lengths can then be 16, 20, + 24, 28 or 32 bytes. However this code has not been optimised to the + same extent and is hence slower (esepcially for the AES block size + of 16 bytes). + + To compile AES (Rijndael) for use in C code use aes.h and exclude + the AES_DLL define in aes.h + + To compile AES (Rijndael) for use in in C++ code use aescpp.h and + exclude the AES_DLL define in aes.h + + To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use + aes.h, include the AES_DLL define and compile the DLL. If using + the test files to test the DLL, exclude aes.c from the test build + project and compile it with the same defines as used for the DLL + (ensure that the DLL path is correct) + + CONFIGURATION OPTIONS (here and in aes.h) + + a. define BLOCK_SIZE in aes.h to set the cipher block size (16, 24 + or 32 for the standard code, or 16, 20, 24, 28 or 32 for the + extended code) or leave this undefined for dynamically variable + block size (this will result in much slower code). + b. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL + c. You may need to set PLATFORM_BYTE_ORDER to define the byte order. + d. If you want the code to run in a specific internal byte order, then + INTERNAL_BYTE_ORDER must be set accordingly. + e. set other configuration options decribed below. +*/ + +#ifndef _AESOPT_H +#define _AESOPT_H + +/* START OF CONFIGURATION OPTIONS + + USE OF DEFINES + + Later in this section there are a number of defines that control the + operation of the code. In each section, the purpose of each define is + explained so that the relevant form can be included or excluded by + setting either 1's or 0's respectively on the branches of the related + #if clauses. +*/ + +/* 1. PLATFORM SPECIFIC INCLUDES */ + +/* Determine endianness for in-kernel compile */ +#if defined(__KERNEL__) +#include + +# if defined(__LITTLE_ENDIAN) +# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN +# elif defined(__BIG_ENDIAN) +# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN +# else +# error "Kernel endianness undefined?" +# endif +#else +# error "Isn't this supposed to be in-kernel?" +/* end of Torrey's hack for the kernel */ + +#if defined(__GNUC__) || defined(__GNU_LIBRARY__) +# include +# include +#elif defined(__CRYPTLIB__) +# if defined( INC_ALL ) +# include "crypt.h" +# elif defined( INC_CHILD ) +# include "../crypt.h" +# else +# include "crypt.h" +# endif +# if defined(DATA_LITTLEENDIAN) +# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN +# else +# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN +# endif +#elif defined(_MSC_VER) +# include +#elif !defined(WIN32) +# include +# if !defined (_ENDIAN_H) +# include +# else +# include _ENDIAN_H +# endif +#endif + +#endif + +/* 2. BYTE ORDER IN 32-BIT WORDS + + To obtain the highest speed on processors with 32-bit words, this code + needs to determine the order in which bytes are packed into such words. + The following block of code is an attempt to capture the most obvious + ways in which various environemnts specify heir endian definitions. It + may well fail, in which case the definitions will need to be set by + editing at the points marked **** EDIT HERE IF NECESSARY **** below. +*/ +#define AES_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */ +#define AES_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */ + +#if !defined(PLATFORM_BYTE_ORDER) +#if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN) +# if defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN) +# if defined(BYTE_ORDER) +# if (BYTE_ORDER == LITTLE_ENDIAN) +# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN +# elif (BYTE_ORDER == BIG_ENDIAN) +# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN +# endif +# endif +# elif defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN) +# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN +# elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN) +# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN +# endif +#elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN) +# if defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN) +# if defined(_BYTE_ORDER) +# if (_BYTE_ORDER == _LITTLE_ENDIAN) +# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN +# elif (_BYTE_ORDER == _BIG_ENDIAN) +# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN +# endif +# endif +# elif defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN) +# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN +# elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN) +# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN +# endif +#elif 0 /* **** EDIT HERE IF NECESSARY **** */ +#define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN +#elif 0 /* **** EDIT HERE IF NECESSARY **** */ +#define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN +#elif (('1234' >> 24) == '1') +# define PLATFORM_BYTE_ORDER AES_LITTLE_ENDIAN +#elif (('4321' >> 24) == '1') +# define PLATFORM_BYTE_ORDER AES_BIG_ENDIAN +#endif +#endif + +#if !defined(PLATFORM_BYTE_ORDER) +# error Please set undetermined byte order (lines 229 or 231 of aesopt.h). +#endif + +/* 3. ASSEMBLER SUPPORT + + If the assembler code is used for encryption and decryption this file only + provides key scheduling so the following defines are used +*/ +#ifdef AES_ASM +#define ENCRYPTION_KEY_SCHEDULE +#define DECRYPTION_KEY_SCHEDULE +#endif + +/* 4. FUNCTIONS REQUIRED + + This implementation provides five main subroutines which provide for + setting block length, setting encryption and decryption keys and for + encryption and decryption. When the assembler code is not being used + the following definition blocks allow the selection of the routines + that are to be included in the compilation. +*/ +#if 1 +#ifndef AES_ASM +#define SET_BLOCK_LENGTH +#endif +#endif + +#if 1 +#ifndef AES_ASM +#define ENCRYPTION_KEY_SCHEDULE +#endif +#endif + +#if 1 +#ifndef AES_ASM +#define DECRYPTION_KEY_SCHEDULE +#endif +#endif + +#if 1 +#ifndef AES_ASM +#define ENCRYPTION +#endif +#endif + +#if 1 +#ifndef AES_ASM +#define DECRYPTION +#endif +#endif + +/* 5. BYTE ORDER WITHIN 32 BIT WORDS + + The fundamental data processing units in Rijndael are 8-bit bytes. The + input, output and key input are all enumerated arrays of bytes in which + bytes are numbered starting at zero and increasing to one less than the + number of bytes in the array in question. This enumeration is only used + for naming bytes and does not imply any adjacency or order relationship + from one byte to another. When these inputs and outputs are considered + as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to + byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte. + In this implementation bits are numbered from 0 to 7 starting at the + numerically least significant end of each byte (bit n represents 2^n). + + However, Rijndael can be implemented more efficiently using 32-bit + words by packing bytes into words so that bytes 4*n to 4*n+3 are placed + into word[n]. While in principle these bytes can be assembled into words + in any positions, this implementation only supports the two formats in + which bytes in adjacent positions within words also have adjacent byte + numbers. This order is called big-endian if the lowest numbered bytes + in words have the highest numeric significance and little-endian if the + opposite applies. + + This code can work in either order irrespective of the order used by the + machine on which it runs. Normally the internal byte order will be set + to the order of the processor on which the code is to be run but this + define can be used to reverse this in special situations +*/ +#if 1 +#define INTERNAL_BYTE_ORDER PLATFORM_BYTE_ORDER +#elif defined(AES_LITTLE_ENDIAN) +#define INTERNAL_BYTE_ORDER AES_LITTLE_ENDIAN +#elif defined(AES_BIG_ENDIAN) +#define INTERNAL_BYTE_ORDER AES_BIG_ENDIAN +#endif + +/* 6. FAST INPUT/OUTPUT OPERATIONS. + + On some machines it is possible to improve speed by transferring the + bytes in the input and output arrays to and from the internal 32-bit + variables by addressing these arrays as if they are arrays of 32-bit + words. On some machines this will always be possible but there may + be a large performance penalty if the byte arrays are not aligned on + the normal word boundaries. On other machines this technique will + lead to memory access errors when such 32-bit word accesses are not + properly aligned. The option SAFE_IO avoids such problems but will + often be slower on those machines that support misaligned access + (especially so if care is taken to align the input and output byte + arrays on 32-bit word boundaries). If SAFE_IO is not defined it is + assumed that access to byte arrays as if they are arrays of 32-bit + words will not cause problems when such accesses are misaligned. +*/ +#if 1 +#define SAFE_IO +#endif + +/* 7. LOOP UNROLLING + + The code for encryption and decrytpion cycles through a number of rounds + that can be implemented either in a loop or by expanding the code into a + long sequence of instructions, the latter producing a larger program but + one that will often be much faster. The latter is called loop unrolling. + There are also potential speed advantages in expanding two iterations in + a loop with half the number of iterations, which is called partial loop + unrolling. The following options allow partial or full loop unrolling + to be set independently for encryption and decryption +*/ +#if 1 +#define ENC_UNROLL FULL +#elif 0 +#define ENC_UNROLL PARTIAL +#else +#define ENC_UNROLL NONE +#endif + +#if 1 +#define DEC_UNROLL FULL +#elif 0 +#define DEC_UNROLL PARTIAL +#else +#define DEC_UNROLL NONE +#endif + +/* 8. FIXED OR DYNAMIC TABLES + + When this section is included the tables used by the code are comipled + statically into the binary file. Otherwise they are computed once when + the code is first used. +*/ +#if 1 +#define FIXED_TABLES +#endif + +/* 9. FAST FINITE FIELD OPERATIONS + + If this section is included, tables are used to provide faster finite + field arithmetic (this has no effect if FIXED_TABLES is defined). +*/ +#if 1 +#define FF_TABLES +#endif + +/* 10. INTERNAL STATE VARIABLE FORMAT + + The internal state of Rijndael is stored in a number of local 32-bit + word varaibles which can be defined either as an array or as individual + names variables. Include this section if you want to store these local + varaibles in arrays. Otherwise individual local variables will be used. +*/ +#if 1 +#define ARRAYS +#endif + +/* In this implementation the columns of the state array are each held in + 32-bit words. The state array can be held in various ways: in an array + of words, in a number of individual word variables or in a number of + processor registers. The following define maps a variable name x and + a column number c to the way the state array variable is to be held. + The first define below maps the state into an array x[c] whereas the + second form maps the state into a number of individual variables x0, + x1, etc. Another form could map individual state colums to machine + register names. +*/ + +#if defined(ARRAYS) +#define s(x,c) x[c] +#else +#define s(x,c) x##c +#endif + +/* 11. VARIABLE BLOCK SIZE SPEED + + This section is only relevant if you wish to use the variable block + length feature of the code. Include this section if you place more + emphasis on speed rather than code size. +*/ +#if 1 +#define FAST_VARIABLE +#endif + +/* 12. INTERNAL TABLE CONFIGURATION + + This cipher proceeds by repeating in a number of cycles known as 'rounds' + which are implemented by a round function which can optionally be speeded + up using tables. The basic tables are each 256 32-bit words, with either + one or four tables being required for each round function depending on + how much speed is required. The encryption and decryption round functions + are different and the last encryption and decrytpion round functions are + different again making four different round functions in all. + + This means that: + 1. Normal encryption and decryption rounds can each use either 0, 1 + or 4 tables and table spaces of 0, 1024 or 4096 bytes each. + 2. The last encryption and decryption rounds can also use either 0, 1 + or 4 tables and table spaces of 0, 1024 or 4096 bytes each. + + Include or exclude the appropriate definitions below to set the number + of tables used by this implementation. +*/ + +#if 1 /* set tables for the normal encryption round */ +#define ENC_ROUND FOUR_TABLES +#elif 0 +#define ENC_ROUND ONE_TABLE +#else +#define ENC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the last encryption round */ +#define LAST_ENC_ROUND FOUR_TABLES +#elif 0 +#define LAST_ENC_ROUND ONE_TABLE +#else +#define LAST_ENC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the normal decryption round */ +#define DEC_ROUND FOUR_TABLES +#elif 0 +#define DEC_ROUND ONE_TABLE +#else +#define DEC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the last decryption round */ +#define LAST_DEC_ROUND FOUR_TABLES +#elif 0 +#define LAST_DEC_ROUND ONE_TABLE +#else +#define LAST_DEC_ROUND NO_TABLES +#endif + +/* The decryption key schedule can be speeded up with tables in the same + way that the round functions can. Include or exclude the following + defines to set this requirement. +*/ +#if 1 +#define KEY_SCHED FOUR_TABLES +#elif 0 +#define KEY_SCHED ONE_TABLE +#else +#define KEY_SCHED NO_TABLES +#endif + +/* END OF CONFIGURATION OPTIONS */ + +#define NO_TABLES 0 /* DO NOT CHANGE */ +#define ONE_TABLE 1 /* DO NOT CHANGE */ +#define FOUR_TABLES 4 /* DO NOT CHANGE */ +#define NONE 0 /* DO NOT CHANGE */ +#define PARTIAL 1 /* DO NOT CHANGE */ +#define FULL 2 /* DO NOT CHANGE */ + +#if defined(BLOCK_SIZE) && ((BLOCK_SIZE & 3) || BLOCK_SIZE < 16 || BLOCK_SIZE > 32) +#error An illegal block size has been specified. +#endif + +#if !defined(BLOCK_SIZE) +#define RC_LENGTH 29 +#else +#define RC_LENGTH 5 * BLOCK_SIZE / 4 - (BLOCK_SIZE == 16 ? 10 : 11) +#endif + +/* Disable at least some poor combinations of options */ + +#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES +#undef LAST_ENC_ROUND +#define LAST_ENC_ROUND NO_TABLES +#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES +#undef LAST_ENC_ROUND +#define LAST_ENC_ROUND ONE_TABLE +#endif + +#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE +#undef ENC_UNROLL +#define ENC_UNROLL NONE +#endif + +#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES +#undef LAST_DEC_ROUND +#define LAST_DEC_ROUND NO_TABLES +#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES +#undef LAST_DEC_ROUND +#define LAST_DEC_ROUND ONE_TABLE +#endif + +#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE +#undef DEC_UNROLL +#define DEC_UNROLL NONE +#endif + +#include "aes.h" + + /* + upr(x,n): rotates bytes within words by n positions, moving bytes to + higher index positions with wrap around into low positions + ups(x,n): moves bytes by n positions to higher index positions in + words but without wrap around + bval(x,n): extracts a byte from a word + */ + +#if (INTERNAL_BYTE_ORDER == AES_LITTLE_ENDIAN) +#if defined(_MSC_VER) +#define upr(x,n) _lrotl((x), 8 * (n)) +#else +#define upr(x,n) (((x) << (8 * (n))) | ((x) >> (32 - 8 * (n)))) +#endif +#define ups(x,n) ((x) << (8 * (n))) +#define bval(x,n) ((uint8_t)((x) >> (8 * (n)))) +#define bytes2word(b0, b1, b2, b3) \ + (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | (b0)) +#endif + +#if (INTERNAL_BYTE_ORDER == AES_BIG_ENDIAN) +#define upr(x,n) (((x) >> (8 * (n))) | ((x) << (32 - 8 * (n)))) +#define ups(x,n) ((x) >> (8 * (n)))) +#define bval(x,n) ((uint8_t)((x) >> (24 - 8 * (n)))) +#define bytes2word(b0, b1, b2, b3) \ + (((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | ((uint32_t)(b2) << 8) | (b3)) +#endif + +#if defined(SAFE_IO) + +#define word_in(x) bytes2word((x)[0], (x)[1], (x)[2], (x)[3]) +#define word_out(x,v) { (x)[0] = bval(v,0); (x)[1] = bval(v,1); \ + (x)[2] = bval(v,2); (x)[3] = bval(v,3); } + +#elif (INTERNAL_BYTE_ORDER == PLATFORM_BYTE_ORDER) + +#define word_in(x) *(uint32_t*)(x) +#define word_out(x,v) *(uint32_t*)(x) = (v) + +#else + +#if !defined(bswap_32) +#if !defined(_MSC_VER) +#define _lrotl(x,n) (((x) << n) | ((x) >> (32 - n))) +#endif +#define bswap_32(x) ((_lrotl((x),8) & 0x00ff00ff) | (_lrotl((x),24) & 0xff00ff00)) +#endif + +#define word_in(x) bswap_32(*(uint32_t*)(x)) +#define word_out(x,v) *(uint32_t*)(x) = bswap_32(v) + +#endif + +/* the finite field modular polynomial and elements */ + +#define WPOLY 0x011b +#define BPOLY 0x1b + +/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ + +#define m1 0x80808080 +#define m2 0x7f7f7f7f +#define FFmulX(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY)) + +/* The following defines provide alternative definitions of FFmulX that might + give improved performance if a fast 32-bit multiply is not available. Note + that a temporary variable u needs to be defined where FFmulX is used. + +#define FFmulX(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6)) +#define m4 (0x01010101 * BPOLY) +#define FFmulX(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4) +*/ + +/* Work out which tables are needed for the different options */ + +#ifdef AES_ASM +#ifdef ENC_ROUND +#undef ENC_ROUND +#endif +#define ENC_ROUND FOUR_TABLES +#ifdef LAST_ENC_ROUND +#undef LAST_ENC_ROUND +#endif +#define LAST_ENC_ROUND FOUR_TABLES +#ifdef DEC_ROUND +#undef DEC_ROUND +#endif +#define DEC_ROUND FOUR_TABLES +#ifdef LAST_DEC_ROUND +#undef LAST_DEC_ROUND +#endif +#define LAST_DEC_ROUND FOUR_TABLES +#ifdef KEY_SCHED +#undef KEY_SCHED +#define KEY_SCHED FOUR_TABLES +#endif +#endif + +#if defined(ENCRYPTION) || defined(AES_ASM) +#if ENC_ROUND == ONE_TABLE +#define FT1_SET +#elif ENC_ROUND == FOUR_TABLES +#define FT4_SET +#else +#define SBX_SET +#endif +#if LAST_ENC_ROUND == ONE_TABLE +#define FL1_SET +#elif LAST_ENC_ROUND == FOUR_TABLES +#define FL4_SET +#elif !defined(SBX_SET) +#define SBX_SET +#endif +#endif + +#if defined(DECRYPTION) || defined(AES_ASM) +#if DEC_ROUND == ONE_TABLE +#define IT1_SET +#elif DEC_ROUND == FOUR_TABLES +#define IT4_SET +#else +#define ISB_SET +#endif +#if LAST_DEC_ROUND == ONE_TABLE +#define IL1_SET +#elif LAST_DEC_ROUND == FOUR_TABLES +#define IL4_SET +#elif !defined(ISB_SET) +#define ISB_SET +#endif +#endif + +#if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE) +#if KEY_SCHED == ONE_TABLE +#define LS1_SET +#define IM1_SET +#elif KEY_SCHED == FOUR_TABLES +#define LS4_SET +#define IM4_SET +#elif !defined(SBX_SET) +#define SBX_SET +#endif +#endif + +#ifdef FIXED_TABLES +#define prefx extern const +#else +#define prefx extern +extern uint8_t tab_init; +void gen_tabs(void); +#endif + +prefx uint32_t rcon_tab[29]; + +#ifdef SBX_SET +prefx uint8_t s_box[256]; +#endif + +#ifdef ISB_SET +prefx uint8_t inv_s_box[256]; +#endif + +#ifdef FT1_SET +prefx uint32_t ft_tab[256]; +#endif + +#ifdef FT4_SET +prefx uint32_t ft_tab[4][256]; +#endif + +#ifdef FL1_SET +prefx uint32_t fl_tab[256]; +#endif + +#ifdef FL4_SET +prefx uint32_t fl_tab[4][256]; +#endif + +#ifdef IT1_SET +prefx uint32_t it_tab[256]; +#endif + +#ifdef IT4_SET +prefx uint32_t it_tab[4][256]; +#endif + +#ifdef IL1_SET +prefx uint32_t il_tab[256]; +#endif + +#ifdef IL4_SET +prefx uint32_t il_tab[4][256]; +#endif + +#ifdef LS1_SET +#ifdef FL1_SET +#undef LS1_SET +#else +prefx uint32_t ls_tab[256]; +#endif +#endif + +#ifdef LS4_SET +#ifdef FL4_SET +#undef LS4_SET +#else +prefx uint32_t ls_tab[4][256]; +#endif +#endif + +#ifdef IM1_SET +prefx uint32_t im_tab[256]; +#endif + +#ifdef IM4_SET +prefx uint32_t im_tab[4][256]; +#endif + +/* Set the number of columns in nc. Note that it is important */ +/* that nc is a constant which is known at compile time if the */ +/* highest speed version of the code is needed */ + +#if defined(BLOCK_SIZE) +#define nc (BLOCK_SIZE >> 2) +#else +#define nc (cx->n_blk >> 2) +#endif + +/* generic definitions of Rijndael macros that use of tables */ + +#define no_table(x,box,vf,rf,c) bytes2word( \ + box[bval(vf(x,0,c),rf(0,c))], \ + box[bval(vf(x,1,c),rf(1,c))], \ + box[bval(vf(x,2,c),rf(2,c))], \ + box[bval(vf(x,3,c),rf(3,c))]) + +#define one_table(x,op,tab,vf,rf,c) \ + ( tab[bval(vf(x,0,c),rf(0,c))] \ + ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \ + ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \ + ^ op(tab[bval(vf(x,3,c),rf(3,c))],3)) + +#define four_tables(x,tab,vf,rf,c) \ + ( tab[0][bval(vf(x,0,c),rf(0,c))] \ + ^ tab[1][bval(vf(x,1,c),rf(1,c))] \ + ^ tab[2][bval(vf(x,2,c),rf(2,c))] \ + ^ tab[3][bval(vf(x,3,c),rf(3,c))]) + +#define vf1(x,r,c) (x) +#define rf1(r,c) (r) +#define rf2(r,c) ((r-c)&3) + +/* perform forward and inverse column mix operation on four bytes in long word x in */ +/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */ + +#define dec_fmvars +#if defined(FM4_SET) /* not currently used */ +#define fwd_mcol(x) four_tables(x,fm_tab,vf1,rf1,0) +#elif defined(FM1_SET) /* not currently used */ +#define fwd_mcol(x) one_table(x,upr,fm_tab,vf1,rf1,0) +#else +#undef dec_fmvars +#define dec_fmvars uint32_t f1, f2; +#define fwd_mcol(x) (f1 = (x), f2 = FFmulX(f1), f2 ^ upr(f1 ^ f2, 3) ^ upr(f1, 2) ^ upr(f1, 1)) +#endif + +#define dec_imvars +#if defined(IM4_SET) +#define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0) +#elif defined(IM1_SET) +#define inv_mcol(x) one_table(x,upr,im_tab,vf1,rf1,0) +#else +#undef dec_imvars +#define dec_imvars uint32_t f2, f4, f8, f9; +#define inv_mcol(x) \ + (f9 = (x), f2 = FFmulX(f9), f4 = FFmulX(f2), f8 = FFmulX(f4), f9 ^= f8, \ + f2 ^= f4 ^ f8 ^ upr(f2 ^ f9,3) ^ upr(f4 ^ f9,2) ^ upr(f9,1)) +#endif + +#if defined(FL4_SET) +#define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c) +#elif defined(LS4_SET) +#define ls_box(x,c) four_tables(x,ls_tab,vf1,rf2,c) +#elif defined(FL1_SET) +#define ls_box(x,c) one_table(x,upr,fl_tab,vf1,rf2,c) +#elif defined(LS1_SET) +#define ls_box(x,c) one_table(x,upr,ls_tab,vf1,rf2,c) +#else +#define ls_box(x,c) no_table(x,s_box,vf1,rf2,c) +#endif + +#endif diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/aestab.c linux-2.4.19-pre7-crypt/net/bridge/aestab.c --- linux-2.4.19-pre7/net/bridge/aestab.c Wed Dec 31 16:00:00 1969 +++ linux-2.4.19-pre7-crypt/net/bridge/aestab.c Thu Apr 18 13:39:15 2002 @@ -0,0 +1,494 @@ +/* + ------------------------------------------------------------------------- + Copyright (c) 2001, Dr Brian Gladman , Worcester, UK. + All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explcit or implied warranties + in respect of any properties, including, but not limited to, correctness + and fitness for purpose. + ------------------------------------------------------------------------- + Issue Date: 07/02/2002 +*/ + +#include "aesopt.h" + +#if defined(FIXED_TABLES) || !defined(FF_TABLES) + +/* finite field arithmetic operations */ + +#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY)) +#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY)) +#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \ + ^ (((x>>5) & 4) * WPOLY)) +#define f3(x) (f2(x) ^ x) +#define f9(x) (f8(x) ^ x) +#define fb(x) (f8(x) ^ f2(x) ^ x) +#define fd(x) (f8(x) ^ f4(x) ^ x) +#define fe(x) (f8(x) ^ f4(x) ^ f2(x)) + +#endif + +#if defined(FIXED_TABLES) + +#define sb_data(w) \ + w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\ + w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\ + w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\ + w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\ + w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\ + w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\ + w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\ + w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\ + w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\ + w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\ + w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\ + w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\ + w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\ + w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\ + w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\ + w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\ + w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\ + w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\ + w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\ + w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\ + w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\ + w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\ + w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\ + w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\ + w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\ + w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\ + w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\ + w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\ + w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\ + w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\ + w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\ + w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) + +#define isb_data(w) \ + w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\ + w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\ + w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\ + w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\ + w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\ + w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\ + w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\ + w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\ + w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\ + w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\ + w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\ + w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\ + w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\ + w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\ + w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\ + w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\ + w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\ + w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\ + w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\ + w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\ + w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\ + w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\ + w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\ + w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\ + w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\ + w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\ + w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\ + w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\ + w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\ + w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\ + w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\ + w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d), + +#define mm_data(w) \ + w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\ + w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\ + w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\ + w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\ + w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\ + w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\ + w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\ + w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\ + w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\ + w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\ + w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\ + w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\ + w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\ + w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\ + w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\ + w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\ + w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\ + w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\ + w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\ + w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\ + w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\ + w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\ + w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\ + w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\ + w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\ + w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\ + w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\ + w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\ + w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\ + w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\ + w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\ + w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) + +#define h0(x) (x) + +/* These defines are used to ensure tables are generated in the + right format depending on the internal byte order required +*/ + +#define w0(p) bytes2word(p, 0, 0, 0) +#define w1(p) bytes2word(0, p, 0, 0) +#define w2(p) bytes2word(0, 0, p, 0) +#define w3(p) bytes2word(0, 0, 0, p) + +/* Number of elements required in this table for different + block and key lengths is: + + Rcon Table key length (bytes) + Length 16 20 24 28 32 + --------------------- + block 16 | 10 9 8 7 7 + length 20 | 14 11 10 9 9 + (bytes) 24 | 19 15 12 11 11 + 28 | 24 19 16 13 13 + 32 | 29 23 19 17 14 + + this table can be a table of bytes if the key schedule + code is adjusted accordingly +*/ + +#define u0(p) bytes2word(f2(p), p, p, f3(p)) +#define u1(p) bytes2word(f3(p), f2(p), p, p) +#define u2(p) bytes2word(p, f3(p), f2(p), p) +#define u3(p) bytes2word(p, p, f3(p), f2(p)) + +#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p)) +#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p)) +#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p)) +#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p)) + +const uint32_t rcon_tab[29] = +{ + w0(0x01), w0(0x02), w0(0x04), w0(0x08), + w0(0x10), w0(0x20), w0(0x40), w0(0x80), + w0(0x1b), w0(0x36), w0(0x6c), w0(0xd8), + w0(0xab), w0(0x4d), w0(0x9a), w0(0x2f), + w0(0x5e), w0(0xbc), w0(0x63), w0(0xc6), + w0(0x97), w0(0x35), w0(0x6a), w0(0xd4), + w0(0xb3), w0(0x7d), w0(0xfa), w0(0xef), + w0(0xc5) +}; + +#ifdef SBX_SET +const uint8_t s_box[256] = { sb_data(h0) }; +#endif +#ifdef ISB_SET +const uint8_t inv_s_box[256] = { isb_data(h0) }; +#endif + +#ifdef FT1_SET +const uint32_t ft_tab[256] = { sb_data(u0) }; +#endif +#ifdef FT4_SET +const uint32_t ft_tab[4][256] = + { { sb_data(u0) }, { sb_data(u1) }, { sb_data(u2) }, { sb_data(u3) } }; +#endif + +#ifdef FL1_SET +const uint32_t fl_tab[256] = { sb_data(w0) }; +#endif +#ifdef FL4_SET +const uint32_t fl_tab[4][256] = + { { sb_data(w0) }, { sb_data(w1) }, { sb_data(w2) }, { sb_data(w3) } }; +#endif + +#ifdef IT1_SET +const uint32_t it_tab[256] = { isb_data(v0) }; +#endif +#ifdef IT4_SET +const uint32_t it_tab[4][256] = + { { isb_data(v0) }, { isb_data(v1) }, { isb_data(v2) }, { isb_data(v3) } }; +#endif + +#ifdef IL1_SET +const uint32_t il_tab[256] = { isb_data(w0) }; +#endif +#ifdef IL4_SET +const uint32_t il_tab[4][256] = + { { isb_data(w0) }, { isb_data(w1) }, { isb_data(w2) }, { isb_data(w3) } }; +#endif + +#ifdef LS1_SET +const uint32_t ls_tab[256] = { sb_data(w0) }; +#endif +#ifdef LS4_SET +const uint32_t ls_tab[4][256] = + { { sb_data(w0) }, { sb_data(w1) }, { sb_data(w2) }, { sb_data(w3) } }; +#endif + +#ifdef IM1_SET +const uint32_t im_tab[256] = { mm_data(v0) }; +#endif +#ifdef IM4_SET +const uint32_t im_tab[4][256] = + { { mm_data(v0) }, { mm_data(v1) }, { mm_data(v2) }, { mm_data(v3) } }; +#endif + +#else /* dynamic table generation */ + +uint8_t tab_init = 0; + +#define const + +uint32_t rcon_tab[RC_LENGTH]; + +#ifdef SBX_SET +uint8_t s_box[256]; +#endif +#ifdef ISB_SET +uint8_t inv_s_box[256]; +#endif + +#ifdef FT1_SET +uint32_t ft_tab[256]; +#endif +#ifdef FT4_SET +uint32_t ft_tab[4][256]; +#endif + +#ifdef FL1_SET +uint32_t fl_tab[256]; +#endif +#ifdef FL4_SET +uint32_t fl_tab[4][256]; +#endif + +#ifdef IT1_SET +uint32_t it_tab[256]; +#endif +#ifdef IT4_SET +uint32_t it_tab[4][256]; +#endif + +#ifdef IL1_SET +uint32_t il_tab[256]; +#endif +#ifdef IL4_SET +uint32_t il_tab[4][256]; +#endif + +#ifdef LS1_SET +uint32_t ls_tab[256]; +#endif +#ifdef LS4_SET +uint32_t ls_tab[4][256]; +#endif + +#ifdef IM1_SET +uint32_t im_tab[256]; +#endif +#ifdef IM4_SET +uint32_t im_tab[4][256]; +#endif + +#if !defined(FF_TABLES) + +/* Generate the tables for the dynamic table option + + It will generally be sensible to use tables to compute finite + field multiplies and inverses but where memory is scarse this + code might sometimes be better. But it only has effect during + initialisation so its pretty unimportant in overall terms. +*/ + +/* return 2 ^ (n - 1) where n is the bit number of the highest bit + set in x with x in the range 1 < x < 0x00000200. This form is + used so that locals within fi can be bytes rather than words +*/ + +static uint8_t hibit(const uint32_t x) +{ uint8_t r = (uint8_t)((x >> 1) | (x >> 2)); + + r |= (r >> 2); + r |= (r >> 4); + return (r + 1) >> 1; +} + +/* return the inverse of the finite field element x */ + +static uint8_t fi(const uint8_t x) +{ uint8_t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0; + + if(x < 2) return x; + + for(;;) + { + if(!n1) return v1; + + while(n2 >= n1) + { + n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2); + } + + if(!n2) return v2; + + while(n1 >= n2) + { + n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1); + } + } +} + +#else + +/* define the finite field multiplies required for Rijndael */ + +#define f2(x) ((x) ? pow[log[x] + 0x19] : 0) +#define f3(x) ((x) ? pow[log[x] + 0x01] : 0) +#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) +#define fb(x) ((x) ? pow[log[x] + 0x68] : 0) +#define fd(x) ((x) ? pow[log[x] + 0xee] : 0) +#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) +#define fi(x) ((x) ? pow[255 - log[x]]: 0) + +#endif + +/* The forward and inverse affine transformations used in the S-box */ + +#define fwd_affine(x) \ + (w = (uint32_t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(uint8_t)(w^(w>>8))) + +#define inv_affine(x) \ + (w = (uint32_t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(uint8_t)(w^(w>>8))) + +void gen_tabs(void) +{ uint32_t i, w; + +#if defined(FF_TABLES) + + uint8_t pow[512], log[256]; + + /* log and power tables for GF(2^8) finite field with + WPOLY as modular polynomial - the simplest primitive + root is 0x03, used here to generate the tables + */ + + i = 0; w = 1; + do + { + pow[i] = (uint8_t)w; + pow[i + 255] = (uint8_t)w; + log[w] = (uint8_t)i++; + w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0); + } + while (w != 1); + +#endif + + for(i = 0, w = 1; i < RC_LENGTH; ++i) + { + rcon_tab[i] = bytes2word(w, 0, 0, 0); + w = f2(w); + } + + for(i = 0; i < 256; ++i) + { uint8_t b; + + b = fwd_affine(fi((uint8_t)i)); + w = bytes2word(f2(b), b, b, f3(b)); + +#ifdef SBX_SET + s_box[i] = b; +#endif + +#ifdef FT1_SET /* tables for a normal encryption round */ + ft_tab[i] = w; +#endif +#ifdef FT4_SET + ft_tab[0][i] = w; + ft_tab[1][i] = upr(w,1); + ft_tab[2][i] = upr(w,2); + ft_tab[3][i] = upr(w,3); +#endif + w = bytes2word(b, 0, 0, 0); + +#ifdef FL1_SET /* tables for last encryption round (may also */ + fl_tab[i] = w; /* be used in the key schedule) */ +#endif +#ifdef FL4_SET + fl_tab[0][i] = w; + fl_tab[1][i] = upr(w,1); + fl_tab[2][i] = upr(w,2); + fl_tab[3][i] = upr(w,3); +#endif + +#ifdef LS1_SET /* table for key schedule if fl_tab above is */ + ls_tab[i] = w; /* not of the required form */ +#endif +#ifdef LS4_SET + ls_tab[0][i] = w; + ls_tab[1][i] = upr(w,1); + ls_tab[2][i] = upr(w,2); + ls_tab[3][i] = upr(w,3); +#endif + + b = fi(inv_affine((uint8_t)i)); + w = bytes2word(fe(b), f9(b), fd(b), fb(b)); + +#ifdef IM1_SET /* tables for the inverse mix column operation */ + im_tab[b] = w; +#endif +#ifdef IM4_SET + im_tab[0][b] = w; + im_tab[1][b] = upr(w,1); + im_tab[2][b] = upr(w,2); + im_tab[3][b] = upr(w,3); +#endif + +#ifdef ISB_SET + inv_s_box[i] = b; +#endif +#ifdef IT1_SET /* tables for a normal decryption round */ + it_tab[i] = w; +#endif +#ifdef IT4_SET + it_tab[0][i] = w; + it_tab[1][i] = upr(w,1); + it_tab[2][i] = upr(w,2); + it_tab[3][i] = upr(w,3); +#endif + w = bytes2word(b, 0, 0, 0); +#ifdef IL1_SET /* tables for last decryption round */ + il_tab[i] = w; +#endif +#ifdef IL4_SET + il_tab[0][i] = w; + il_tab[1][i] = upr(w,1); + il_tab[2][i] = upr(w,2); + il_tab[3][i] = upr(w,3); +#endif + } + + tab_init = 1; +} + +#endif diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/br_aes_glue.c linux-2.4.19-pre7-crypt/net/bridge/br_aes_glue.c --- linux-2.4.19-pre7/net/bridge/br_aes_glue.c Wed Dec 31 16:00:00 1969 +++ linux-2.4.19-pre7-crypt/net/bridge/br_aes_glue.c Thu Apr 18 17:14:08 2002 @@ -0,0 +1,197 @@ +/* + * br_aes_glue.c + * + * Written by Torrey Hoffman, March 2002 + * + * Copyright 2002 by Torrey Hoffman + * Redistribution of this file is permitted under the GNU Public License version 2. + */ + +#include +#include +#include +#include +#include +#include +#include +#include "br_private.h" +#include "aes.h" + +void br_aes_deletecontext(aes_ctx *context) +{ + /* Frees an aes_ctx */ + if (context) { + memset(context, 0, sizeof(aes_ctx)); + kfree(context); + } +} + +aes_ctx * br_aes_enc_context(unsigned char *key) +{ + /* Allocate, set up, and return a new ewncryption aes_ctx from the key, or NULL on error */ + aes_ctx *context = (aes_ctx *) kmalloc(sizeof(aes_ctx), GFP_KERNEL); + + if (context) + aes_enc_key(key, BR_CRYPT_KEYLEN, context); + + return context; +} + +aes_ctx * br_aes_dec_context(unsigned char *key) +{ + /* Allocate, set up, and return a new decryption aes_ctx from the key, or NULL on error */ + aes_ctx *context = (aes_ctx *) kmalloc(sizeof(aes_ctx), GFP_KERNEL); + + if (context) + aes_dec_key(key, BR_CRYPT_KEYLEN, context); + + return context; +} + +/* return 0 if frame was encrypted, negative if frame should be dropped, positive if frame + * was unencrypted but should be forwarded anyway + */ +int br_aes_encrypt_frame(aes_ctx *context, struct sk_buff *skb) +{ + static unsigned int sample_sec; + static unsigned int sample_count; + struct iphdr *iph; + struct udphdr *uh; + + unsigned char *datastart; + unsigned char *dataend; + unsigned int blocks; + + unsigned char pad; + u16 datalen; + u16 check; + + cycles_t c_end; + cycles_t c_start = get_cycles(); + + /* drop all non-IP packets */ + if (ntohs(skb->protocol) != ETH_P_IP) { + return -1; + } + + /* Pass non-UDP IP without encryption. (TCP, IGMP, ICMP, etc) */ + if (skb->nh.iph->protocol != IPPROTO_UDP) return 1; + + /* So it's UDP/IP, we will encrypt it. */ + iph = skb->nh.iph; + uh = (struct udphdr*)(skb->data+(iph->ihl<<2)); + + datastart = ((unsigned char *)uh) + 8; + dataend = ((unsigned char *)uh) + ntohs(uh->len); + datalen = ntohs(uh->len) - 8; + + /* pad UDP data to multiple of AES block size: BLOCK_SIZE defined in aes.h (16) */ + blocks = (datalen / BLOCK_SIZE) + 1; + pad = BLOCK_SIZE - (datalen % BLOCK_SIZE); + memset(dataend, 0, pad); + dataend += pad - 1; + *dataend = pad; + + /* increase UDP packet length - don't forget to add 8 for the UDP header length */ + uh->len = htons(datalen + pad + 8); + /* increase IP packet length, which does not include header length... */ + iph->tot_len = htons(ntohs(iph->tot_len) + pad); + /* increase ethernet frame length */ + skb->len += pad; + + /* AES-encrypt the UDP data using EBC mode */ + while (blocks--) { + aes_enc_blk(datastart, datastart, context); + datastart += BLOCK_SIZE; + } + + /* if packet had a UDP checksum, recalculate it */ + if ((check = uh->check) != 0) { + printk("bridge encryption: UDP checksums in use, can't handle. Fixme.\n"); + return -1; + } + + /* recalculate IP header checksum */ + iph->check = 0; + iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); + + /* dump sample every 1024 jiffies (100 jiffies / second). */ + if ( (jiffies >> 10) == sample_sec ) sample_count++; + else { + c_end = get_cycles(); + printk("br: IP src=%#lx, dst=%#lx, %d pkts, %ld cyc\n", + (unsigned long int)ntohl(iph->saddr), (unsigned long int)ntohl(iph->daddr), + sample_count, (long)(c_end - c_start)); + /* + printk("UDP srcport=%#hx, dstport=%#hx, datalen=%#hx \n", + ntohs(uh->source), ntohs(uh->dest) ); + */ + sample_sec = (jiffies >> 10); + sample_count = 0; + } + + return 0; +} + +int br_aes_decrypt_frame(aes_ctx *context, struct sk_buff *skb) +{ + struct iphdr *iph; + struct udphdr *uh; + + unsigned char *datastart; + unsigned char *dataend; + unsigned int blocks; + + unsigned char pad; + u16 datalen; + u16 check; + + /* drop all non-IP packets */ + if (ntohs(skb->protocol) != ETH_P_IP) { + return -1; + } + + /* Pass non-UDP IP without decryption. (TCP, IGMP, ICMP, etc) */ + if (skb->nh.iph->protocol != IPPROTO_UDP) return 1; + + /* So it's UDP/IP, we will decrypt it. */ + iph = skb->nh.iph; + uh = (struct udphdr*)(skb->data+(iph->ihl<<2)); + + /* data length should be a multiple of BLOCK_SIZE */ + datastart = ((unsigned char *)uh) + 8; + datalen = ntohs(uh->len) - 8; + blocks = datalen / BLOCK_SIZE; + if (datalen % BLOCK_SIZE) { + printk("br_aes_decrypt_frame: pkt length not multiple of BLOCK_SIZE, discarding\n"); + return -1; + } + + /* AES-decrypt the UDP data using EBC mode */ + while (blocks--) { + aes_enc_blk(datastart, datastart, context); + datastart += BLOCK_SIZE; + } + + /* depad UDP data after decryption, bytes of padding is stored in last byte */ + dataend = ((unsigned char *)uh) + ntohs(uh->len); + pad = *dataend; + /* decrease UDP packet length - don't forget to add 8 for the UDP header length */ + uh->len = htons(datalen - pad + 8); + /* decrease IP packet length, which does not include header length... */ + iph->tot_len = htons(ntohs(iph->tot_len) - pad); + /* decrease ethernet frame length */ + skb->len -= pad; + + /* recalculate UDP checksum, if checksums are being used */ + if ((check = uh->check) != 0) { + printk("bridge decryption: UDP checksums in use, can't handle. Fixme.\n"); + return -1; + } + + /* recalculate IP header checksum */ + iph->check = 0; + iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); + + return 0; +} diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/br_chash.c linux-2.4.19-pre7-crypt/net/bridge/br_chash.c --- linux-2.4.19-pre7/net/bridge/br_chash.c Wed Dec 31 16:00:00 1969 +++ linux-2.4.19-pre7-crypt/net/bridge/br_chash.c Thu Apr 18 13:39:15 2002 @@ -0,0 +1,283 @@ +/* br_chash.c + * + * Hash tables for encrypting bridge: hash(addr) == encryption context + * By Torrey Hoffman + * + * br_chash.c was originally based on: + * "br_filter.c: Mac + Protocol filtering database", which + * is an add-on patch for the kernel ethernet bridge code. + * + * br_filter.c authors: + * Christian Welzel + * Arne Fitzenreiter + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#include +#include +#include +#include +#include +#include "br_private.h" + +// calculates the hash for a mac +static __inline__ int br_mac_hash(unsigned char *mac) +{ + unsigned long x; + + x = mac[0]; + x = (x << 2) ^ mac[1]; + x = (x << 2) ^ mac[2]; + x = (x << 2) ^ mac[3]; + x = (x << 2) ^ mac[4]; + x = (x << 2) ^ mac[5]; + + x ^= x >> 8; + + return x & (BR_HASH_SIZE - 1); +} + +// insert entry into encrypt hashtable list +static __inline__ void __encrypt_macs_link(struct net_bridge *br, + struct net_bridge_chash_entry *ent, + int hash) +{ + ent->next_hash = br->encrypt_macs[hash]; + if (ent->next_hash != NULL) + ent->next_hash->pprev_hash = &ent->next_hash; + br->encrypt_macs[hash] = ent; + ent->pprev_hash = &br->encrypt_macs[hash]; +} + +// insert entry into decrypt hashtable list +static __inline__ void __decrypt_macs_link(struct net_bridge *br, + struct net_bridge_chash_entry *ent, + int hash) +{ + ent->next_hash = br->decrypt_macs[hash]; + if (ent->next_hash != NULL) + ent->next_hash->pprev_hash = &ent->next_hash; + br->decrypt_macs[hash] = ent; + ent->pprev_hash = &br->decrypt_macs[hash]; +} + +// remove entry from hashtable list +static __inline__ void __crypt_macs_unlink(struct net_bridge_chash_entry *ent) +{ + *(ent->pprev_hash) = ent->next_hash; + if (ent->next_hash != NULL) + ent->next_hash->pprev_hash = ent->pprev_hash; + ent->next_hash = NULL; + ent->pprev_hash = NULL; +} + +// tests if entry is unused -> deletes it +void br_chash_delete(struct net_bridge_chash_entry *ent) +{ + if (atomic_dec_and_test(&ent->use_count)) { + br_aes_deletecontext(ent->context); + ent->context = NULL; + kfree(ent); + } +} + +// returns pointer to encryption context if addr is on encryption list, otherwise NULL +aes_ctx * br_chash_get_enc(struct net_bridge *br, unsigned char *addr) +{ + struct net_bridge_chash_entry *ent; + + read_lock_bh(&br->crypt_macs_lock); + ent = br->encrypt_macs[br_mac_hash(addr)]; + while (ent != NULL) { + if (!memcmp(ent->addr.addr, addr, ETH_ALEN)) { + read_unlock_bh(&br->crypt_macs_lock); + return ent->context; + } + ent = ent->next_hash; + } + + read_unlock_bh(&br->crypt_macs_lock); + return NULL; +} + +// returns pointer to decryption context if addr is on decryption list, otherwise NULL +aes_ctx * br_chash_get_dec(struct net_bridge *br, unsigned char *addr) +{ + struct net_bridge_chash_entry *ent; + + read_lock_bh(&br->crypt_macs_lock); + ent = br->decrypt_macs[br_mac_hash(addr)]; + while (ent != NULL) { + if (!memcmp(ent->addr.addr, addr, ETH_ALEN)) { + read_unlock_bh(&br->crypt_macs_lock); + return ent->context; + } + ent = ent->next_hash; + } + + read_unlock_bh(&br->crypt_macs_lock); + return NULL; +} + +// returns all (mac, encryption context) pairs to userspace +int br_chash_get_entries(struct net_bridge *br, + unsigned char *_buf, + int maxnum, + int offset) +{ + int i; + int num; + struct __crypthash_entry *walk; + + num = 0; + walk = (struct __crypthash_entry *)_buf; + + read_lock_bh(&br->crypt_macs_lock); + for (i = 0; i < BR_HASH_SIZE; i++) { + struct net_bridge_chash_entry *f; + + f = br->encrypt_macs[i]; + while (f != NULL && num < maxnum) { + struct __crypthash_entry ent; + int err; + struct net_bridge_chash_entry *g; + struct net_bridge_chash_entry **pp; + + if (offset) { + offset--; + f = f->next_hash; + continue; + } + + memset(&ent, 0, sizeof(struct __crypthash_entry)); + memcpy(ent.mac_addr, f->addr.addr, ETH_ALEN); + + atomic_inc(&f->use_count); + read_unlock_bh(&br->crypt_macs_lock); + err = copy_to_user(walk, &ent, sizeof(struct __crypthash_entry)); + read_lock_bh(&br->crypt_macs_lock); + + g = f->next_hash; + pp = f->pprev_hash; + br_chash_delete(f); + + if (err) + goto out_fault; + if (g == NULL && pp == NULL) + goto out_disappeared; + num++; + walk++; + + f = g; + } + } +out: + read_unlock_bh(&br->crypt_macs_lock); + return num; + +out_disappeared: + num = -EAGAIN; + goto out; + +out_fault: + num = -EFAULT; + goto out; +} + +// Creates an encryption or decryption context, inserts (address, context) pair into hashtable +// returns 0 on success, error code otherwise +int br_chash_insert(struct net_bridge *br, + unsigned char *addr, + unsigned char *key, + unsigned int flags) +{ + struct net_bridge_chash_entry *ent; + aes_ctx *newcontext; + int index; + + index = br_mac_hash(addr); + write_lock_bh(&br->crypt_macs_lock); + + /* do we already have an entry for this mac? */ + ent = br->encrypt_macs[index]; + while (ent != NULL) { + if (!memcmp(ent->addr.addr, addr, ETH_ALEN)) { + write_unlock_bh(&br->crypt_macs_lock); + return -EINVAL; + } + ent = ent->next_hash; + } + ent = br->decrypt_macs[index]; + while (ent != NULL) { + if (!memcmp(ent->addr.addr, addr, ETH_ALEN)) { + write_unlock_bh(&br->crypt_macs_lock); + return -EINVAL; + } + ent = ent->next_hash; + } + + /* no entry exists, make one */ + ent = kmalloc(sizeof(*ent), GFP_ATOMIC); + if (ent == NULL) { + write_unlock_bh(&br->crypt_macs_lock); + return -ENOMEM; + } + + /* encrypt or decrypt? */ + newcontext = (flags & BR_ENCRYPT_FLAG) ? br_aes_enc_context(key) : br_aes_dec_context(key); + if (newcontext == NULL) { + write_unlock_bh(&br->crypt_macs_lock); + return -ENOMEM; + } + + memcpy(ent->addr.addr, addr, ETH_ALEN); + ent->context = newcontext; + atomic_set(&ent->use_count, 1); + + (flags & BR_ENCRYPT_FLAG) ? __encrypt_macs_link(br, ent, index) : __decrypt_macs_link(br, ent, index); + + write_unlock_bh(&br->crypt_macs_lock); + return 0; +} + +// finds and removes (address, context) from hashtable, stops encryption or decryption. +// returns 0 on success, error code otherwise. "flags" is unused for now. +int br_chash_remove(struct net_bridge *br, unsigned char *addr, unsigned int flags) +{ + struct net_bridge_chash_entry *f; + int err = 0; + + write_lock_bh(&br->crypt_macs_lock); + + f = br->encrypt_macs[br_mac_hash(addr)]; + while ( f && (memcmp(f->addr.addr, addr, ETH_ALEN)) ) { + f = f->next_hash; + } + if (f) { + __crypt_macs_unlink(f); + br_chash_delete(f); + f = NULL; + goto unlock_exit; + } + + f = br->decrypt_macs[br_mac_hash(addr)]; + while ( f && (memcmp(f->addr.addr, addr, ETH_ALEN)) ) { + f = f->next_hash; + } + if (f) { + __crypt_macs_unlink(f); + br_chash_delete(f); + f = NULL; + goto unlock_exit; + } + + err = -EINVAL; + + unlock_exit: + write_unlock_bh(&br->crypt_macs_lock); + return err; +} diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/br_input.c linux-2.4.19-pre7-crypt/net/bridge/br_input.c --- linux-2.4.19-pre7/net/bridge/br_input.c Mon Feb 25 11:38:14 2002 +++ linux-2.4.19-pre7-crypt/net/bridge/br_input.c Thu Apr 18 17:07:14 2002 @@ -19,6 +19,9 @@ #include #include #include "br_private.h" +#ifdef BR_CRYPT_IP +#include +#endif unsigned char bridge_ula[6] = { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x00 }; @@ -115,10 +118,15 @@ void br_handle_frame(struct sk_buff *skb) { struct net_bridge *br; - unsigned char *dest; struct net_bridge_port *p; + aes_ctx *context; - dest = skb->mac.ethernet->h_dest; +#ifdef BR_CRYPT_IP + __u32 daddr; + static unsigned char dest[ETH_ALEN]; +#else + unsigned char *dest; +#endif p = skb->dev->br_port; if (p == NULL) @@ -145,6 +153,39 @@ !(dest[5] & 0xF0)) goto handle_special_frame; +#ifdef BR_CRYPT_IP + /* encrypt/decrypt based on destination IP address rather than MAC */ + + /* drop or forward all non-IP packets */ + if (ntohs(skb->protocol) != ETH_P_IP) { + /* printk("br_handle_frame forwarding non-IP packet...\n"); */ + goto forward; + } + daddr = (skb->nh.iph)->daddr; + + /* get the destination IP byte by byte */ + dest[0] = (unsigned char)daddr; + dest[1] = (unsigned char)(daddr >> 8); + dest[2] = (unsigned char)(daddr >> 16); + dest[3] = (unsigned char)(daddr >> 24); + dest[4] = 0; + dest[5] = 0; + +#else + dest = skb->mac.ethernet->h_dest; +#endif + + if ((context = br_chash_get_enc(br, dest))) { + if (br_aes_encrypt_frame(context, skb) < 0) + goto err; + } + else if ((context = br_chash_get_dec(br, dest))) { + if (br_aes_decrypt_frame(context, skb) < 0) + goto err; + } + /* else, no decryption or encryption context. Drop, or forward unencrypted? */ + + forward: if (p->state == BR_STATE_FORWARDING) { NF_HOOK(PF_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL, br_handle_frame_finish); @@ -152,9 +193,9 @@ return; } -err: + err: read_unlock(&br->lock); -err_nolock: + err_nolock: kfree_skb(skb); return; diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/br_ioctl.c linux-2.4.19-pre7-crypt/net/bridge/br_ioctl.c --- linux-2.4.19-pre7/net/bridge/br_ioctl.c Thu Nov 9 15:57:53 2000 +++ linux-2.4.19-pre7-crypt/net/bridge/br_ioctl.c Thu Apr 18 13:39:15 2002 @@ -4,8 +4,9 @@ * * Authors: * Lennert Buytenhek + * Arne Fitzenreiter * - * $Id: br_ioctl.c,v 1.4 2000/11/08 05:16:40 davem Exp $ + * $Id: br_ioctl.c,v 1.4a 2001/04/22 14:20:40 davem Exp $ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License @@ -179,8 +180,43 @@ case BRCTL_GET_FDB_ENTRIES: return br_fdb_get_entries(br, (void *)arg0, arg1, arg2); + + case BRCTL_SET_MAC_CRYPT: + { + unsigned char key[BR_CRYPT_KEYLEN]; + unsigned char addr[ETH_ALEN]; + unsigned char flags; + + if (copy_from_user(addr, (unsigned char *)arg0, ETH_ALEN)) return -EFAULT; + if (copy_from_user(key, (unsigned char *)arg1, 16)) return -EFAULT; + flags = (unsigned char)arg2; + + printk("BRCTL_SET_MAC_CRYPT: (bridge, addr, flags) = (%s, %0x%0x%0x%0x%0x%0x, %d)\n", + br->dev.name, addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], flags); + + return br_chash_insert(br, addr, key, flags); + } + + case BRCTL_SET_MAC_CLEAR: + { + unsigned char addr[ETH_ALEN]; + unsigned char flags; + + if (copy_from_user(addr, (unsigned char *)arg0, ETH_ALEN)) return -EFAULT; + flags = (unsigned char)arg1; + + printk("BRCTL_SET_MAC_CLEAR: (bridge, addr, flags) = (%s, %0x%0x%0x%0x%0x%0x, %d)\n", + br->dev.name, addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], flags); + + return br_chash_remove(br, addr, flags); + } + + case BRCTL_GET_CRYPT_MACS: + { + return br_chash_get_entries(br, (void *)arg0, arg1, arg2); } + } return -EOPNOTSUPP; } @@ -225,6 +261,7 @@ return br_del_bridge(buf); } + } return -EOPNOTSUPP; diff -urN -X dontdiff linux-2.4.19-pre7/net/bridge/br_private.h linux-2.4.19-pre7-crypt/net/bridge/br_private.h --- linux-2.4.19-pre7/net/bridge/br_private.h Mon Feb 25 11:38:14 2002 +++ linux-2.4.19-pre7-crypt/net/bridge/br_private.h Thu Apr 18 16:51:13 2002 @@ -19,6 +19,14 @@ #include #include #include "br_private_timer.h" +#include "aes.h" + +/* If encryption of ethernet frames based on IP address rather than MAC address + * is desired, #define BR_CRYPT_IP. For address specification, the first four + * bytes of a MAC address passed in through the IOCTL will be treated as the + * IP address, and the last two bytes will be ignored. + */ +#define BR_CRYPT_IP 1 #define BR_HASH_BITS 8 #define BR_HASH_SIZE (1 << BR_HASH_BITS) @@ -53,6 +61,15 @@ unsigned is_static:1; }; +struct net_bridge_chash_entry +{ + struct net_bridge_chash_entry *next_hash; + struct net_bridge_chash_entry **pprev_hash; + atomic_t use_count; + mac_addr addr; + aes_ctx *context; +}; + struct net_bridge_port { struct net_bridge_port *next; @@ -84,8 +101,16 @@ struct net_bridge_port *port_list; struct net_device dev; struct net_device_stats statistics; + + /* hashtable of forwarded macs */ rwlock_t hash_lock; struct net_bridge_fdb_entry *hash[BR_HASH_SIZE]; + + /* hashtables for encrypting, decrypting by destination address */ + rwlock_t crypt_macs_lock; + struct net_bridge_chash_entry *encrypt_macs[BR_HASH_SIZE]; + struct net_bridge_chash_entry *decrypt_macs[BR_HASH_SIZE]; + struct timer_list tick; /* STP */ @@ -201,4 +226,28 @@ /* br_stp_bpdu.c */ extern void br_stp_handle_bpdu(struct sk_buff *skb); +/* br_chash.c */ +extern aes_ctx * br_chash_get_enc(struct net_bridge *br, unsigned char *addr); +extern aes_ctx * br_chash_get_dec(struct net_bridge *br, unsigned char *addr); + +extern int br_chash_insert(struct net_bridge *br, + unsigned char *addr, + unsigned char *key, + unsigned int flags); +extern int br_chash_remove(struct net_bridge *br, unsigned char *addr, unsigned int flags); + +extern int br_chash_get_entries(struct net_bridge *br, + unsigned char *_buf, + int maxnum, + int offset); + +/* br_aes_glue.c */ +extern void br_aes_deletecontext(aes_ctx *context); +extern aes_ctx * br_aes_enc_context(unsigned char *key); +extern aes_ctx * br_aes_dec_context(unsigned char *key); +extern int br_aes_encrypt_frame(aes_ctx *context, struct sk_buff *skb); +extern int br_aes_decrypt_frame(aes_ctx *context, struct sk_buff *skb); + #endif + +